祥和启源关注到,2025年6月,工信部在审议《工业和信息化部信息化和工业化融合2025年工作要点》时,明确提出要实施“人工智能+制造”行动,加快重点行业智能升级,打造智能制造“升级版”。这一表态不仅释放出国家层面对“人工智能+制造”深度融合的高度重视,也为制造业在新一轮技术革命中指明了方向。意味着,AI浪潮下,制造业正面临深层次的结构性挑战与转型压力,站在“再定义”的门槛上。
AI对制造业的“再定义”
一方面,全球产业链加速重构、劳动力结构性短缺、质量与效率的双重压力日益显现;另一方面,人工智能正以前所未有的速度,渗透至从研发、生产到供应链的各个环节,成为驱动制造业高质量发展的新变量。在这样的背景下,制造业不再是AI应用的跟随者,而是其落地的主战场和主引擎。
然而,人工智能赋能制造,并不仅仅是为了提升效率、降低成本,它更深刻地作用于制造系统的逻辑结构、组织方式与治理能力,推动制造业从流程驱动向数据驱动、从自动化向智能化、从人控系统向人机协同演进。
因此,AI技术的嵌入,正开启一场对制造业的“再定义”。
AI 技术嵌入制造系统,重构产业逻辑与价值体系:
1、产品:从物理实体升级为“智能、可进化、服务化”的载体(如具备预测维护功能的智能设备)。
2、工厂:转型为“自适应、自优化、高度自治”的智能体(如通过AI动态调整产线参数的无人工厂)。
3、供应链:演变为“具备预测能力和韧性”的动态网络(如实时响应市场波动的智能调度系统)。
4、价值创造:从“生产交付”转向“基于结果的持续服务”(如“制造即服务”模式)。
5、人的角色:从“操作者”转变为“与 AI 协同的决策者、创新者”(如数据分析师、问题解决专家)。
“人工智能+制造”的落地路径:
从感知到决策的五次迭代
随着“人工智能+制造”深度融合的推进,制造系统的底层架构正在发生一场静悄悄却深刻的重构。
传统制造体系长期沿用“感知-控制-执行-运营-决策”分明的层级型架构:传感器采集数据,上传至控制系统,指令驱动执行单元,自动化系统进行过程管理,决策层基于周期性数据分析进行计划与调整。
这种自上而下、中心控制的线性架构曾支撑了大规模、标准化的工业化生产,但在当下愈加复杂、动态、多变的制造环境中,其局限性日益凸显。今天,制造业正从层级式架构向平台化、一体化、去中心化的系统重构迈进。感知、控制、执行、运营与决策不再是彼此割裂的系统,而是在统一的技术平台上协同运行、实时互动、智能闭环。
在这个架构中,人工智能的能力不再是简单地插入某一环节,而是深度嵌入整个制造网络的神经中枢,成为系统智能的支撑。这种范式的转变,也勾勒出AI在制造业落地的五次迭代路径:
1
感知迭代:从“能看见”到“能理解”
制造的第一步,始于感知。随着AI视频分析、智能传感器、工业物联网的发展,制造现场的“眼睛”变得更加敏锐,也更具洞察力。
AI赋能的视频分析系统,能够自动识别生产异常、故障预警、物品状态变化,补足了传统规则算法的局限性。在数据采集端,传感器不仅采集数据,更通过边缘AI实现初步分析与事件触发,为后续控制与执行提供实时依据。感知层的强化,是AI向制造系统全面介入的起点。
2
控制迭代:从“规则控制”到“智能生成”
控制系统的智能化,正在重写工业控制的逻辑。以软件定义自动化(SDA)为代表的新一代工业控制系统,打破了传统控制系统中硬件与编程绑定的封闭结构,构建起开放、模块化、可重构的控制平台。
在此基础上,AI助手工具的引入,让PLC编程不再是工程师独自完成的任务。通过自然语言描述控制目标,AI可自动生成控制逻辑、流程图、语义注释,甚至进行调试与验证,实现从人写代码到人机共写的跃迁,提升控制系统的开发效率与迭代能力。
3
执行迭代:从“自动化”到“智能协同体”
制造执行层也正在发生变化。AI与工业机器人深度融合,推动形成具备感知、判断、执行能力的“工业智能体”。
AI驱动下的机器人不仅能完成重复性操作,还可实现自适应路径规划、实时视觉识别与多机协同调度。通过数字孪生与仿真平台,机器人在部署前可在虚拟环境中完成训练与验证,极大压缩上线周期。从此,制造的“手脚”不再只是执行指令,而是具备判断力的智能执行体。
4
运营迭代:从“记录管理”到“预测优化”
制造过程管理系统也因AI的引入而全面重构。人工智能正加速集成于MES、设备管理系统等生产过程核心平台,成为制造优化的智能引擎。
AI可对设备运行数据进行建模,提前识别潜在故障,实现预测性维护;通过实时数据流分析,优化OEE表现;在质量管理中,借助AI识别缺陷模式与根因,提升产品的一致性与合规性。制造过程管理正在从反应式控制迈向预测式运营,实现进程级、数据驱动的智能优化。
5
决策迭代:从“周期滞后分析”到“实时智能决策”
制造企业的决策也正迎来智能化转型。AI将逐渐具备辅助排产、库存模拟、质量预测等高复杂度决策任务的能力。
借助AI模型,企业可以进行情景模拟,快速评估不同排产策略的资源占用与交付可能性;结合历史与实时数据,AI可预测质量波动趋势,提前调整工艺参数;在库存管理中,AI可动态推荐补货策略,提升库存周转效率。制造决策从滞后响应迈向前瞻洞察,成为企业敏捷性与韧性的关键支撑。
在这五次跃迁中,我们看到,人工智能不再是外置的工具,而是制造系统内部的智能因子。它跨越传统边界,融入每一层级、每一节点,推动制造系统从分层控制走向智能协同,从局部优化走向系统智能。
这场系统性重构,正是“人工智能+制造”的内涵所在。
AI赋能智能工厂再升级
广州市番禺区的广汽埃安智能生态工厂总装车间,AI元素“无处不在”。600余台机器人不停挥舞手臂,精准地定位、抓取并拼装各个模块,仅用数秒就能完成玻璃、座椅、轮胎等零部件安装;随处可见的无人化智能移动机器人往来穿梭,实现10公斤以上零部件100%全自动搭载;3D视觉跟踪技术代替人工肉眼,实现纳米级精准控制。
在宝武钢铁集团热轧生产线,一块钢坯制成钢板需要经过20道工序、涉及300多个参数。过去,工程师调整生产钢板的种类和尺寸需要耗费5天时间,如今,大模型能对最优参数进行预测,显著降低调整时间,提高预测精度和钢板成材率。
在福建东龙针纺有限公司纺织车间,“AI质检员”已逐渐代替人工质检。5G+经编花边瑕疵AI视觉识别检测系统应用以来,织机面料实现了在线100%全检,平均检出率达95%以上,远高于人工检测水平,整体效率提升2~3倍,企业人工成本每年节约200多万元。
在施耐德电气无锡工厂,基于AI技术的热处理数字仿真系统,能够通过算法优化,使单台设备能耗降低25%,氮气消耗减少36%;同时,利用暖通空调的AI动态调控系统结合数字孪生技术,实现单位产品组用水量下降56%。
如今,像这样的AI超级工厂已在全国各地“遍地开花”。可以看到,“AI+制造”正在重塑制造业的生产模式,其影响不仅体现在生产效率的提升,更推动着制造业加速向智能化、柔性化和绿色化方向转型。
工业和信息化部发布的数据显示,当前我国智能工厂梯度培育提质增效,全国已建成3万余家基础级智能工厂、1200余家先进级智能工厂、230余家卓越级智能工厂。这些类型的智能工厂覆盖超过80%的制造业行业大类,工厂产品研发周期平均缩短28.4%,生产效率平均提升22.3%。
从“标准化生产”到“个性化定制”,从“劳动密集”到“算法密集”,AI超级工厂的背后是制造业底层逻辑的变革。相较于一般的自动化产线,在这里,工业机械臂进化为更灵活、更智慧的具身智能,传统语言模型升级为可自主分析、辅助决策的大模型,仿真技术融合物联网、大数据和5G-A等技术,形成实时交互的数字孪生系统……这些技术的协同创新,持续推动制造业向更高阶的智能化跃迁。
系统谋划的蓝图已绘就,祥和启源相信,千亿算力、百万数据、千家企业等目标勾勒出AI赋能新型工业化的壮阔前景。然而,从愿景到现实,关键在于破除协同之困、打通应用之梗、筑牢安全之基。唯有政府、企业、科研机构拧成一股绳,让算力、数据、模型、标准、安全在统一“基座”上高效流转,人工智能才能真正成为新型工业化的“超级引擎”。 祥和启源将做好产业研究智库专家、企业发展经营谋士、经济价值顾问三重角色,做好企业咨询与产业咨询服务,以促进中小企业发展为新时代发展契机,立足产业远景,洞察时代发展前沿与管理新知,助力人工智能赋能制造产业快速发展。
免责声明:本文内容来源于物联网智、中国电子报、先进制造业等。本平台不对文章信息或资料真实性、有效性、准确性及完整性承担责任。文章仅供阅读参考,不作任何投资建议,如有侵权请联系删除。